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Abstract
The primal-dual method 1s interpreted as a parametric
linear programming method. Some variants and related methods,
such as Dantzig's self-dual parametric method and the linear
programming variant of Houthakker's capacity method for qua-

dratic programming are considered and compared.

1. INTRODUCTION

In a well-known paper by Dantzig, Ford, and Fulkerson (2),
a method for solving a linear programming problem was presented.
In effect, they gave a set of rules which they proved would lead
ultimately to an optimal solution - if one existed. 1In the
course of presenting the specific rules of the method, they gave
an interpretation to the algorithm involving the formulation of
both the primal and the dual problems. Here we give an alterna-

tive interpretation of the method leading to the same set of

rules.
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It turns out that the primal-dual method can be interpreted
as a parametric method of a very simple sort. In the following,
this method 1is explained by means of a simple example. The
equivalence with the primal-dual method is then considered in
some detail.

The parametric problem concerned is one with a parametric
objective function. 1Its dual problem has a parametric right-
hand side. This problem may be solved parametrically. Any
problem which has an initial feasible solution can be treated in
the same manner; the resulting method may be called the dual
equivalent of the primal-dual method. This method is closely
related to the linear programming variant of Houthakker's ca-
pacity method in its simplicial formulation. The latter method
can be proved to be equivalent to Dantzig's self-dual parametric

method. These matters are discussed in the last section.

2. A PARAMETRIC METHOD FOR LINFAR PROGRAMMING

We consider the following linear programming problem. Mini-

mize

(2.1) f = c'x
subject to

(2.2) Ax = b
(2.3) x>0

c and x are column vettors of n elements, b is a column vector
of m elements and A is an m x n matrix; the symbol ' denotes

transposition. We assume that the elements of b and ¢ are non-

1
negative. We also assume that there is at least one feasible

I

For cases in which the elements of c are not nonnegative,
see Dantzig, Ford and Fulkerson (2) or Dantzig (l1). There it is
proposed to add an "artificial constraint”" €'x < 6 for a large
unspecified value of 8 and to generate a feasible solution to

the dual problem.

-
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solution to the constraints (2.2), (2.3).
Let us also consider the following related problem which we

shall call the extended problem. Minimize

(2.4) r* = ¢c'x + re'y
subject to

(2.5) Ax ¢+ y = b,
(2.6) x, ¥y 2 0.

y 1s a column vector o m artificial variables, e is a vector of
m elements which are all unity and 2 is a variahle parameter.

For a sufficiently high value of 2, the solution of the
extended problem must be the same as that of the original probe
lem, because such a value of ) will prevent the y-variables from
having nonzero values. On this, the usual two-phase method for
linear programming 1s based. The extended problem with ) having
a very high value is solved instead of the original problem with
an initial basic solution y = b. This amounts to minimizing
first the objective function
(2.7) e'y = Iy,
since the terms in A are dominant; this leads to a feasible so-
lution of the original problem, after which the original objec-
tive function can be used to find the optimal solution.

The following parametric method also uses the extended prob-
lem, but instead of solving tuc problem immediately for a high
value of A, we solve the problem first for A = 0, after which A
is increased parametrically. The initial basic feasible solution
y = b is A = 0 also an optimal solution, since all elements of c¢
are assumed to be nonnegative. After that, parametric linear

programming (see Gass and Saaty (3))is used to trace the optimal
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solutions of the extended problem for increasing values of .
The solution for A + « must be the optimal solution of the ori-
ginal problem.

This parametric method 1s equivalent to the primal-dual
method in the sense that its computational rules are the same;
it can therefore be viewed as an alternate interpretation of th.
primal-dual method. First an example of application of this
parametric method will be given. In the next section, this ex-
ample will be used to explain the equivalence.

As an example, we take the problem used by Dantzig (1) for
the primal-dual method. Minimize
(2.3) f = xl + Ux_+ 8x_ + 8xu + 23x

2 3 5

subject to
gxl + “xa - 5x3 + Txy - Hxs = §,
(2.9) 2 - Uxy + bxg - Uxy +'4xg = 2,
( Xy - 3x3 + Uxy - 2xg = 2,

(2.10) X1s Xos X3, Xyy Xy 2 0.
In the formulation of the extended problem, the terms

Ay + Ay +y
1 2 3

are added to the objective function and Y1» ¥, and y3 are added

to the left side of the respective equations of (2.9). The ini-
tial basic solution is then y, = 8, Yy, = 2 and yy = 2 and the
corresponding initial tableau is obtained by subtracting A times
the equality constraints of the extended problem from its objec-
tive function. This objective function becomes then

(2.11) f* = x, ¢ uxz + 8x. + 8xu + 23x5

3

+ a(- 12 - X, = X,

Putting the A terms in a separate row, the initial tableau as

+ ux3 = Txy + 2xg).

given in Tableau O of Tatle 1 is obtalned; the value of the
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terms without A 1s indicated by f, that of the terms with A by
W. Adding to the f-row A times, the w-row for specific values
of A, a row 1s obtained which represents the objective function
for specific values of ).

In Tableau 0 of Table 1, the specific value of A 1s first
taken to be 0. For this value, the initial solution 1s also an
optimal solution of the extended prohlem, since all coefficients
in the row -f*(0) are non-negative. Next, consider for what
range of A the present solution 1s an optimal one. 1Its upper
bound 1s determined by

(2.12) Min / f
i ._1. W1<0

\ 1 /

where fy stands for the element in the f-row and in the i-th

column and wy ‘or the element in the w-row and in the same
column. In Tableau 0, it turns out that the highest value of A
for which the solution is optimal is 1, because for that value
the coefficient of x; in the objective function, becomes 2zero.
The row -f*(1) gives then the value of the objective function
for » = 1. According to the usual parametric procedure, Xy
enters the basis and ¥y leaves it. Tableau 0 is then trans-
formed into Tableau 1. Note that the value of w has decreased,
as it should, because a variable having a negative coefficient

in the w-row entered the basis. The column of yl which is now

a nonbasic variable 1s deleted because we do not wish yp to
re-enter the basis.

The solution of Tableau 1 is optimal for » = 1. An upper
bound on A» for which this solution 1s optimal i1s found by apply-
ing (2.12) again; this upper bound turns out to be A = 13.




TABLE 1.

SIMPLEX TABLEAUX FOR EXAMPLE

Tab]. Basic Values Nonbasic Variables

Var. Bas. V. X, X, x3 Xy x5
A 8 1 y -5 7 -4
Yo 2 0 -4 4 -l by
Y3 2 0 1 -3 y -2

0
-W -12 -1 -1 4 -7 2
-f 0 1 Yy 8 8 23
-r*(0) 0 1 4 8 8 23
-f%(1) -12 0 3 12 1 25
X, X3 Xy Xg
3 8 [ 5 7 -4
Yo 2 -4 4 -4 4
S ¥}7 2 1 -3 4y -2
-w -4 3 -1 0 -2
-f -8 0 13 1 27
-r#(1) -12 3 12 1 25
-f*#(13)| -60 39 0 1 1
X, Xy Xg
Xy 10% -1 2 1
x3 b -1 -1 1
5 yj3c 3‘5 -2 l 1
-W -3k 2 -1 -1
-f -1l 13 14 14
-r*(13) -60 39 1 1
-rR(14) -63k 41 0 0
X2 *s5
Xy 34 3 -1
X3 L -3 2
) Xy 3k -2 1
-w 0 C 0
-f -63% by 0
-r*(14) -63% bl 0
X, :11
3 5k 1k k
Xg 2 -1} )
Xy, 1k -¥ -k

Y
-f -63) b1 0
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x3 must then enter the basis and y2 leaves it; the column of
y, is deleted in the resulting tableau.

In Tableau 2, it turns out that the minimum in (2.12) is
not unique, because the coefficients of Xy and x5 in the f*-row
both vanish for A = 1l4. This is a degenerate solution, but it
causes no difficulty because whichever variable enters into the
basis, the value of w decreases. Hence, eilther variable may
enter the basis. Choousing X, we find that y3 must leave the
basis. The solution of the resulting tableau is found to be
the optimal solution, since w has a zero value. This optimal
solution 1s not unique because the coefficient of £ In the
column of x_ is zero. The corresponding extreme-point optimal

5
solution 1s generated in Tableau 4.

3. EQUIVALENCE WITH THE PRIMAL-DUAL IE THOD

The primal-dual method starts with a feasible solution to
the dual of the original problem. The general form of this
dual problem is, see (2.1)-(2.3):

Maximize

(3.1) b'u
subject to

(3.2) A'u < c.

u is a column vector of m elements. Introducing a vector v of
n slack variables, the constraint (3.2) can be written as
(3.3) A'u + v g c,

(3.4) v 2 0.

Because it was assumcd that the elements of ¢ are nonnegative,

an initial feasible solution is v = c, u = 0. However, this
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solution is not likely to be an optimal one, since all elements

of b are nonnegative.

We consider also the primal feasibility problem: Minimize

(3.5) e'y

suhject ta

(3.6) Ax + y = b,
(3.7) x, y 20,
and its dual: Maximize

(3.8) b'u®
subject to

(3.9) A'u* < 0,
(3.10) ut < e,

Constraint (3.9 can be written as
(3.11) A'u* + v* = 0,
(3.12) vh > 0,

The primal-dual method 18 based on the following ideas.
An initial solution of the dual problem (3.1)-(3.2) is avail-
able. Suppose there are some vectors u*, v* which give a
positive value of the objective function of the dual feasibility
problem; for this latter solution, (3.12) need not be satisfied.
If the first solution 1s U, Vv, and the second u®*, v*, then the
solution
(3.13) U + ku*, vV + kv*
must give a higher value of the objective function of the dual
problem for k > 0, since b'uU* was assumed to be positive. iow-

ever, V* was not necessarily positive, so that for some value

of k 2 0, V + kV* might become negative. Hence we determine

[ =
Min vy o
.1 e vi<0 ;

=t

.14
(3.14) -F;
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If this value of k 1s used in (3.13), the cbjective function of
the dual i1s incrcased as much as pussible without making its
solution infeasible. After this, a new soluticn to the dual
feasibility problem 1s generated and added to the solution of
the dual in the same manner as befcre. The dual objective
function is increased until no improvement 1i1s possible because
the objective function of the dual feasibility problem has be-
come zero. The optimal sclution of the dual problem has then
been cbtained.

The solutions of the dual feasibility problem are obtained
via the primal feasibility problem; the dual variables appear
then in the row of the objective function. The method starts
usually with a solution of the dual problem v = ¢, u= 0,
which 1s a feasible solution. For the primal feasibility
problem, the sclution y = b, x = 0 is taken. The corresponding
basic solution of the dual feasibility problem is
(3.15) u* = e, vt = _AuK = pve;
the value of 1ts objective function is b'e which 1s positive
if d has at least one positive eclement. Adding a multiple k
determined by (3.14) of the solution (3.15) to that of the dual
problem, we find that the objective function of the dual prob-
lem is increased for k $ 0; k = 0 can only occur if some basic
v-variables are zero for corresponding negative v%-variables.
This can only occur in the first iteration, because there are
some additional requirements for solutions of the feasibility
problem in later iteratiocns. Thes: are, given the improved

solution of the dual problem, a restricted primal infeasibility

problem 1s solved, in which the variables to enter the basis

. S ———
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are restricted to those which have zero corresponding variables
in the dual problem. These will be the basic variables and the
variable connected with k in (3.14); if the minimum was not
uninque, then all the variables connected with this minimum are
included plus possible other variables connected with zero v-
variables. The optimal solution to this restricted primal
feasibllity problem is one with v¥-variables of the correspond-
ing dual which are nonnegative for v-variables which are zero.
Hence when we next add the solution of the corresponding dual
feasibility problem to the dual solution, k is nonzero. After
this, anothe: restricted primal feasibility problem is solved
and so on, until ti.e objective function of the feasibility
problem has become zero; in that case the optimal solution of
the dual problem has been found, and also the solution of the
original problem.

Let us now compare the primal-dual method with the para-
metric approach using the numerical example presented in the
previous section. Tableau 0 of Table 1 gives the initial so-
lution of the primal feasibility problem; the w-row gives the
value of its objective function and the values of the basic
variables of the corresponding dual solution. Hence we have

vtk =2 o1, v8 e ), vR el vyt =l v =2,

2 3 4 5
The f-row now gives the values of the objective function of
the original dual problem and its corresponding sclution. The

solution of the dual problem is

v1 s 1, ¥ b, v3 = §, vy * 8, v5 = 23,

Now k times the w-row 1s added to the f-row, thus increasing

the objective function of the dual from 0 to 12k. The maximum
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value of k turns out to be 1; the row -f*(1l) gives the improved
value of the objective function of the dual as well as the cor-
responding solution of the dual. According to the parametric
procedure, X, must enter the basis. The same 1is true for the
primal-dual method, since in the restricted primal feasibility

problem only x_ and the basic variables may be in the basis.

1
In the resulting transformation both methods transform the rows
of basic variables and the w-row in the same way; the primal-
dual method has no f-row and 1t does not transform the present
solution of the dual problem. The parametric procedure trans-
forms the f-row or -f¥(l)-row, but this last row does not
change since 1ts element in the xl-column is zero.

In the next tableau the primal-dual method adds k times
the w-row to the f*(1). Kk 1s then found to be 12 and is con-
nected with x3. The parametric procedure adds A times the

w-rows to the f-row and finds 2 = 12, connected with x The

result, the row indicated by -f*(13) 1s, in both cases? the
same. As is easlily seen, k is equal to the increase in 1.

Each cycle in the primal-dual method corresponds with a
particular value of A in the parametric approach. The restrict-
ed columns of the primal feasibility problem are the same as
the columns which have the same ratio A of elements in the
f- and the w-row. Usually the optimal solution to the restrilct-
ed primal feasibility problem will be obtained in one 1teration,
but it is possible that it takes more iterations. This can
be the case when the maximum from which k or A is found is not

unique. The adjusted dual solution contains then more than

one zero apart from the basic variables. An example of this
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can be found in Tableau 2, where both xu and x5 are connected
with the minimum in (3.14). Xy and Xg are then both columns of
the restricted primal feasibility problem and if x_ 1s chesen

5
as a basic varlable instead of xu, it takes two iterations to
obtain the solution of the restricted problem. Again there is
no substantial difference with the parametric procedure.
Hence 1t may be concluded that both procedures are equiv-
alent and differ only by having k in the primal-dual method
which 1s equal to the increment of ) used in the parametric

method. The two methods may therefore be seen as two alter-

native interpretations of the same algorithm.
4. VARIANTS AND RELATED PARAMETRIC METHODS

The dual of the extended problem 1s as follows. Maximise

(4.1) f = b'u
subject to

(4.2) A'u < c,
(4.3) u g \e,

The last set of constraints does not occur in the original
problem but corresponds to the artificial variables 1in the
extended problem.

Each method for the primal linear programming problem has
its equivalent method for the dual problem; for instance, the
dual method for the primal problem is equivalent to the Simplex
method for the dual problem. We shall now indicate the equiv-
alent method of the parametric method described in Section 2.

The initial tableau can be obtained as follows. The

constraints (4.2) and (4.2) can be written as equations by
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means of the introduction of the vectors of slack variables

v and z:

(4.4) A'u + v = ¢,

(4.5) u <+ : e,
(4.6) v, z > 0.

Putting the equations (4.1), (4.4) and (4.5) into tableau
format, we obtain the set-up tableau given in Table 2; the
values of basic variables are separated into a constant term
and a term dependent on A. In the equivalent primal method thc
y-variables were basic and the x-variables nonbasic in the
initial solution. 1In the dual equivalent the z-variables must
therefore be nonbasic and the v-variables basic; the u-variablecs
must be basic because there are no slack variables in the
primal problem. This initial solution and 1ts corresponding
tableaux are generated by block-pivoting on the underlined
matrix I in the set-up tableau in order to introduce the u-
variables in the basis, replac’ ~ the z-variables. After the
u-variables have entered the basis, their rows may be deleted,
because the u-variables are unrestricted.

TABLE 2. SET-UP AND INITIAL TABLEAU FOR EQUIVALENT DUAL METHOD

Bas. |[Val.B.Var, . v . ¢

Var. |C.t A=t
Set-Up | v c 0 A' I 0 0
Tabl. 2z 0 e I 0 f 0
f 0 0 -b' 0 0 1
Init. v c -A'e 0 I -A' 0
Tabl. u 0 e 1 0 I 0
f 0 b'e 0 0 b' 1
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The initial solution is optimal for » = 0 since b ard ¢
are both nonnegative. After this, A 1s increased parametrically
until A + e, This method 1s completely equivalent to the
primal-dual method.

The dual equivalent of the primal-dual method may be
applied to any linear programming problem with an initial
feasible solution. Consider the following problem. Maximize
(4.7) f = c'x
subject to
(4.8) Ax
(4.9) X

We assume that both b and ¢ are nonnegative. Adding the

b,
0.

iV A

"artificial constraint"
(4.10) X < e,
we find that the problem has the same form as (4.1) - (4.3)
apart from the fact that the x-variables are restricted. The
same method may now be applied. Table 3 gives the set-up and
initial tableaux of this method which may be called the dual
equivalent of the primal-dual method.

Let us consider an application of this method to the

following small problem. Maximize

. = u
(4.11) f 3x1 + x2
subject to

(4.12) =X, + 2x2 < 2,
(4.13) X, - x2 <1,
(4.14) x., x_>0.
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TABLE 3. SET-UP AND INITIAL TABLEAU FOR THE DUAL
EQUIVALENT OF THE PRIMAL-DUAL METHOD

Bas. |Val. B. Var.
Var. X |y z £
C.t A-t.
y b 0 A I 0 0
Set-Up
A 0 e . C I 0
Tableau
f 0 0 -c'| O 0 )
y b -Ae 0 I -A 0
Init.
X 0 e I 0 I 0
Tableau
f 0 c'e 0 0 c' 1
Jd
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Table U gives the successive solutions of the method.
Tableau 0 is constructed in accordance with the initial tableau
of Table 3. The critical value of A is found to be 1; at this
value ¥y has to leave the basis. Dual feasibility requires
then that z, should enter the basis. The next critical value
of A 1s U4; hence Y5 should leave the basis and it 1s found
that 2y enters it. 1In Tableau 2 no critical value of A can be
found, so that the optimal solution must have been found. Not
all rows given in Table 4 are needed; the rows of the basic
z-variables can be deleted; furthermore, the rows of basic
x-variables with corresponding nonbasic z-variables are always
the same so that they do not have to be written down.

Instead of adding an "artificial constraint" for each
variable as in (4.10), we may just add one "artificial con-
straint” on the sum of the variables,

(4.15) e'x < .

An initial feasible and optimal solution for x = 0 is then
found by introducing into the basis in the set-up tableau based
on (4.7), (4.8) and (4.15), the variable with the largest
c-coefficient, replacing the slack variable of (4.15). After
this, A is varled parametrically until x » =, Table 5 gives
an application of this method to the problem (4.11) - (4.14).
This procedure can be considered as a variant of Houthakker's

capacity method for quadratic programming (u). For detalls,

see van de Panne and Whinston (5).
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TABLE 4. APPLICATION OF THE DUAL EQUIVALENT
OF THE PRIMAL-DUAL METHOD
Basic Values Basic Variables
Tableau z1 z2
Variable C.t A -t

¥y, 2 -1 1| =2
Yo 1 0 -1 1
0 x1 0 1 l 0
X, 0 1 0 1
£ 0 7 3 4
21 | N
z, -1 k <k | =X
Y, 2 =4 - L]
1 x1 0 1 1l 0
X 1 k b b
f 4 5 5 2
Y2 yl
22 -3 1 -1 -1
=4 -2 -1

z1 1

y 2

2 xl 0 1
1 1

X, 3 0
f 2 0 10 7
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TABLE 5. APPLICATION OF THE CAPACITY METHOD
TO A LINEAR PROGRAMMING PROBLEM

Val.Bas. '

Tabl. Bas.V._E.X?ri-t' xl x2 Tabl.|Bas.V.|{Ind.t.|A-t Yy y3

¥y 2 | o|-1] 2 x; | -2/3 | 2/3]|-1/3{2/3

: Yo 1 0| 1]/-1 Yo 2 1/3 |=1/3] 2/3|1/3
2

Y3 0 1111 X, 2/3 1/3( 1/3|1/3

r o| o|-3|-4 r 2/3 |31/3| 173133

21 y3 Y1 Yo

¥y 2 | -2 |=3]|-2 X4 L 0 1 2

. Yo 1 1121 . Y3 -7 1 -2 | =3

x2 0 1 11 1 x2 3 0 1l l

f 0 4y 1] 4 f 24 0 l 7 10

A method which 1s related to the above approach 1is Dantzig
self-dual parametric method.? First we shall deal with the
special case in which the problem has the form (4.7) - (4.9)
with b aonnegative, and the elements of ¢ positive. The fol-

lowing objective function is then used:

(4.16) f = (c - re)'x.
For
(4.17) A 2 Max cys

J

the initial solution in which the slack variables of (4.8) are
basic 1s feasible and optimal. A parametric procedure 1is then
used to decrease A until an optimal solution is found for A = 0

this is then the solution of the original problem.

2see Dantzig (1) pp. 245 - 247.
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TABLE 6. APPLICATION OF DANTZIG'S
SELF-DUAL PARAMETRIC METHOD

Tabl. Bas.V. V.B.V. 31 X5
¥y 2 -1 2
3 Yo 1 1l -1
r£(x) 0 1 1
f(c) 0 -3 | -4
Xy | Y1
: Yo 2 ] g
r(r) -1 1 | =4
£(c) 4 =5 2

y
x2 3 l 1l
2 X, ] 2 1
£(r) -7 -3 | =2
r(c) 24 10 7

|

Table 6 gives the iterations for an application of this
method to the problem (4.11) - (4.14). The first critical
value of A turns out to be 4, the second 3 1/3; after the
second iteration the optimal solution has been found.

For problems with all elements of b nonnegative and those
of ¢ positive the self-dual parametric method is equivalent
to the capacity method for linear programming in the sense thet

it gener tes the same sequence of soluticns which, however,
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differ in some respects. In the capacity method the slack
variable of the capacity constraint will be nonbasic in all
tableaux except the first and last ones, whereas it may be
considered ac a basic variable in the parametric method. A
further difference is that the variable which in a certain
iteration lecves the basis in the self-dual parametric iter-
ation, leaves the basis in the capacity methcd in the cor-
responding next iteration; Yy leaves the basis in the first
iteration in the capacity method (see Tableau 0 of Table 6),
while in the capacity method it leaves the basis in the second
iteration (see Tableau 1 of Table 5).

The equivalence of bot» methods can be provecd by induction
as follows. In the first iteration the same variable enters
the basis in both methods. In the capacity method Yy the
slack variable of the capacity constraint, leaves the basis,
while in the parametric method an ordinary basic variable
leaves the basis.

Consider any tableau generated by the parametric method.
A representation of such a tableau is given in the first

tableau of Table 7; x, stands for a typical basic variable,

i
x. for a typical nonbasic variable and x, for the variable

k J
which left the basis in the last iteration. The corresponding
tableau for the capacity method can be generated from this

tableau by introducing x, into the basis, replacing rx as a

J
basic variable. The resulting tableau 1s then the second one
of Table 7. We shall now check whether the variables to

leave and to enter the basis are the same in both methods. 1In

the capacity method the variable to leave the Lasis is deter-
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mined by
/,‘ -1 \
(4.18) Min { Py - a3 do , 93 do -1 ¢
| J% 'J‘dTI *15%
L gy -9

TABLE 7. EQUIVALENCE OF SELF-DUAL PARAMETRIC
AND CAPACITY METHOD

[ [Bas.

Var.| Val. B. V.| T . Xy - Xk
Self-| x b ¢ a . a
Dual i i ik ik
Par. . . . . .
ileth.
#
\ AO 1 . Ei . dk
fc c0 0 CJ . ck
Bas. Val. Bas. var.
Var T.t. A=t Xy Xk
x, |b,-a a7ld. |-a, a7t 0 d'ld
1 1717213555 Yol 13 J 0 - 8yk-ag4dy Qi
Cap.
Meth % L] ] . . .
=3 =1 -1
Xy djld, dj : 1 . djid,
-1 -1 -1
C d & . .
fc o chJ 0 chJ 0 k chJ d

Since d, < 0 because x, left the basis, this may be rewritten

J J

as

[}
(4.19) Min @ -d_+ %19 | .4 | a,, <0
1 { 0 a 0 1
\ 1) /
It 1= then obvious that the term behind the comma is connected
with the mininum so that xJ leaves the basis, which 1s as 1t

should be.

Also the variable to enter the basis is the same. In
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the parametric method it 1s determined by

/

(4.20) Min [ Sk d >0 ),
k K

‘.

while in the capacity method it is given by

-1
c c.d4,7°d -1
(4.21) Min "k -_ JJ "k dJ dk < 0 p
-d7"d
J 7k
which can be rewritten as
(4.22) Min [ -d,° # ¢, | a, >0} ;
k \ J5, |k

for dJ < 0 this 1s the same as (4.20).

In his self-dual parametric method Dantzig adds terms in
A only to x-variables which have positive coefficients in the
objective function, while Houthakker includes all x-variables
in this capacity constraint. This difference is a rather
superficial one, since in the parametric method terms in \ may
be added to the coefficients of all x-variables regardless of
sign, while on the other hand, in the capacity method x-var-
iables may be deleted from the capacity constraint if they have
nonpositive coefficients in the objective function.

The main feature of the self-dual parametric method is,
of course, that if a solution is neither primally nor dually
feasible, terms in A may also be added to the values of basic
variables in order to make this solution feasible; hence 1if all
elements of b are negative, b is replaced by
(4.23) b + e,
in case only some elements of b are negative we have instead

of e & vector with unit elements corresponding with negative
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elements of b and zeros elsewhere. A parametric decrease in
A affects then also primal feasibllity and the method may
involve primal as well as dual iterations.

A corresponding capacity method can be constructed as

follows. Consider the following problem. Maximi:ze

(4.24) f = ¢c'x - AX,
subject to

(4.25) Ax - ex, +y = b,
(4.26) e'x + Y, A,
(4.27) X, X35 V> ¥y 2 0.

Instead of the e-vectors we may again have vectors with unit
elements only for negative elements of b and positive ones of
c. X, is here an artificial variable corresponding with a dual
capacity constraint

(4.28) e'u < 1.

In the first iteraticn the x-variable corresponding with the
largest nositive element of ¢ is introduced into the basis,
replacing Yy in the second one, X, enters the basis, replac-
ing the y-variable corresponding with the largest (in absolute
value) negative element of b. After this, A is increased
parametrically in the usual fashlon.

Comparing this version of the capacity method with the
self-dual parametric method, it is found that the latter
method is simpler, because its tableaux have one column and
one row less, while furthermore the capacity method requires
no extra iterations. The self-dual parametric method should

therefore be preferred to the capacity method.




(2)

(3)

(4)

(5)
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